Intersection of Ellipses

نویسنده

  • David Eberly
چکیده

3 Find-Intersection Query 4 3.1 Constructing Intersection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.1 Case d4 6= 0 and e(x̄) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Case d4 6= 0 and e(x̄) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.3 Case d4 = 0, d2 6= 0, and e2 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.4 Case d4 = 0, d2 6= 0, and e2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.5 Case d4 = 0 and d2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 An Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Area of Intersecting Ellipses

5 Area of Intersecting Ellipses 5 5.1 No Intersection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.2 One Intersection Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.3 Two Intersection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.4 Three Intersection Points . . . ....

متن کامل

A novel approach for ellipsoidal outer-approximation of the intersection region of ellipses in the plane

In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional (2D) space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are d...

متن کامل

Calculating ellipse overlap areas

We present an approach for finding the overlap area between two ellipses that does not rely on proxy curves. The Gauss-Green formula is used to determine a segment area between two points on an ellipse. Overlap between two ellipses is calculated by combining the areas of appropriate segments and polygons in each ellipse. For four of the ten possible orientations of two ellipses, the method requ...

متن کامل

On the Intersection Equation of a Hyperboloid and a Plane

In this note, the ideas employed in [1] to treat the problem of an ellipsoid intersected by a plane are applied to the analogous problem of a hyperboloid being intersected by a plane. The curves of intersection resulting in this case are not only ellipses but rather all types of conics: ellipses, hyperbolas and parabolas. In text books of mathematics usually only cases are treated, where the pl...

متن کامل

A new approach to characterizing the relative position of two ellipses depending on one parameter

By using several tools coming from Real Algebraic Geometry, Computer Algebra and Projective Geometry (Sturm–Habicht sequences and the classification of pencils of conics in P2(R)), a new approach for characterizing the ten relative positions of two ellipses is introduced. Each relative position is exclusively characterized by a set of equalities and inequalities depending only on the matrices d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015